Voltage-dependent block of cardiac inward-rectifying potassium current by monovalent cations
نویسندگان
چکیده
The inward-rectifying K+ current (IK1) in cat ventricular myocytes, like inward-rectifying K+ currents in many other preparations, exhibited a negative slope conductance region at hyperpolarized membrane potentials that was time-dependent. This was evident as an inactivation of inward current elicited by hyperpolarizing voltage-clamp pulses resulting in a negative slope region of the steady-state current-voltage relationship at potentials negative to -140 mV. Removing extracellular Na+ prevented the development of the negative slope in this voltage region, suggesting that Na+ can block IK1 channels in a time- and voltage-dependent manner. The time and voltage dependence of Cs+-induced block of IK1 was also examined. Cs+ blocked inward current in a manner similar to that of Na+, but the former was much more potent. The fraction of current blocked by Cs+ in the presence of Na+ was reduced in a time- and voltage-dependent manner, which suggested that these blocking ions compete for a common or at least similar site of action. In the absence of Na+, inactivation of IK1 could also be induced by both Cs+ and Li+. However, Li+ was less potent than Na+ in this respect. Calculation of the voltage sensitivity of current block by each of these ions suggests that the mechanism of block by each is similar.
منابع مشابه
Mg2+-dependent Gating and Strong Inward Rectification of the Cation Channel TRPV6
TRPV6 (CaT1/ECaC2), a highly Ca(2+)-selective member of the TRP superfamily of cation channels, becomes permeable to monovalent cations in the absence of extracellular divalent cations. The monovalent currents display characteristic voltage-dependent gating and almost absolute inward rectification. Here, we show that these two features are dependent on the voltage-dependent block/unblock of the...
متن کاملSerotonin increases an anomalously rectifying K+ current in the Aplysia neuron R15.
Previous work has shown that serotonin causes an increase in K+ conductance in the identified Aplysia neuron R15. This response is mediated by cAMP-dependent protein phosphorylation. The results presented here show that the K+ channel modulated by serotonin is an anomalous or inward rectifier (designated IR) that is present in R15 together with the three other distinct K+ channels previously de...
متن کاملHyperpolarization-activated (Ih) current in mouse vestibular primary neurons.
The presence of a hyperpolarization-activated inward current (Ih) was investigated in mouse vestibular primary neurons using the whole-cell patch-clamp technique. In current-clamp configuration, injection of hyperpolarizing currents induced variations of membrane voltage with prominent time-dependent rectification increasing with current amplitudes. This effect was abolished by 2 mM Cs+ or 100 ...
متن کاملPore Block versus Intrinsic Gating in the Mechanism of Inward Rectification in Strongly Rectifying Irk1 Channels
The IRK1 channel is inhibited by intracellular cations such as Mg(2+) and polyamines in a voltage-dependent manner, which renders its I-V curve strongly inwardly rectifying. However, even in excised patches exhaustively perfused with a commonly used artificial intracellular solution nominally free of Mg(2+) and polyamines, the macroscopic I-V curve of the channels displays modest rectification....
متن کاملK+ channels of stomatal guard cells. Characteristics of the inward rectifier and its control by pH
Intracellular microelectrode recordings and a two-electrode voltage clamp have been used to characterize the current carried by inward rectifying K+ channels of stomatal guard cells from the broadbean, Vicia faba L. Superficially, the current displayed many features common to inward rectifiers of neuromuscular and egg cell membranes. In millimolar external K+ concentrations (Ko+), it activated ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 94 شماره
صفحات -
تاریخ انتشار 1989